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The Quantum reverse Shannon Theorem is an interesting result in quantum information which
allows one to simulate a quantum channel using another channel of greater entanglement assisted
capacity. We present a simplified explanation of M. Berta’s the One-Shot Quantum Reverse Shannon
Theorem. We begin with a brief explanation of the Classical Reverse Shannon Theorem followed
by an overview of the Quantum Reverse Shannon Theorem (QRST). We collect the major concepts
required to prove the theorem in one place and give a proof outline of the QRST. The purpose of
this paper will be to bridge the gap between [3] which may be too technical for beginners and [5]
which may be too sparse.

I. INTRODUCTION

First published by Bennett et al. in [1], the quantum
reverse Shannon Theorem (QRST) is an exciting new
development in Quantum Information Theory. Where
Shannon’s Noisy Channel Coding Theorem gives a pre-
scription for how much information can be sent reliably
via a noisy channel, the classical reverse theorem uses
a noiseless channel and a reservoir of shared random-
ness in order to simulate noisy communication between 2
parties. The QRST accomplishes a similar task to this,
but we must substitute shared randomness with quan-
tum entanglement in the form of embezzlement states
(definition III.3 on page 4).

The QRST was conjectured in 2001 in [2] when Ben-
nett et al. proved that the entanglement assisted capacity
of a quantum channel takes a similar form to the clas-
sical capacity of a channel. Because of the similarities
between the classical and quantum cases, we will review
the classical case as well.

We begin with a proof outline of the Classical Reverse
Shannon Theorem as given in [1], we then follow up
with some definitions and intuitive explanations about
the concepts which contribute to the QRST. This will
lead up to giving an outline of the proof of the QRST
as given in [5]. M. Berta et al. published an outline of
the proof in [4], however that may be too sparse for the
reader to gain meaningful information. It is the goal of
this paper to bridge the gap between these two publica-
tions as a primer for reading [5].

II. CLASSICAL REVERSE SHANNON
THEOREM

Throughout this section on classical communication,
all messages will be assumed to be in bits.

A. Classical Shannon Theorem

In his 1948 paper Shannon defined the mutual infor-
mation of 2 messages X and Y of length N and M re-

spectively are

I(X : Y ) = S(X) + S(Y )− S(XY ) (1)

where S is the Shannon entropy and the mutual entropy
where applicable and X and Y are sequences of bits.
We define a noisy channel Λr : X → Λr(X) with trans-
mission rate r. In the noisy coding theorem, Shannon
proved that a sender Alice (A) may transmit a message
X of length N to a receiver Bob (B) through Λr with an
error ε(N) such that ε→ 0 as N →∞ if

r < C = max
X

I(X : Λr(X)). (2)

In order to do this, Shannon employs error correction
codes given in [9]. It is worth noting that if both A and
B have access to the same string of random bits R then
this does not improve either the size of the message they
are able to send reliably or the rate at which they are
able to send it. Also, if B is able to send a message to A,
then A is still not able to improve the transmission rate.
Both of these were proved by Shannon in [9], but will be
omitted here for brevity.

In [2], along with the QRST, Bennett et al. gave a
corollary to Shannon’s result which is now known as the
Classical Reverse Shannon Theorem (CRST). Let us as-
sume that A and B both have a noiseless communication
channel with r = 0. Then using a shared randomness R,
A and B are able to effectively simulate a noisy channel
using Λ0.

It is easy to see that systems like the CRST might be
useful for examples like a simplistic private key cryptog-
raphy system; Shannon himself noted the possible use-
fulness of these systems for encryption [3] but never pro-
duced the CRST.

B. Protocol and Proof Outline

To gain an intuition as to how the QRST will work, it
is useful for us to consider the CRST over a channel for
bits. Because of this simplification we can use concepts
like the Hamming distance (The number of deletions an
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exchanges required to turn one bit string into another)
without losing generality of the type of messages that
can be sent. The following definitions and protocol come
from combining the protocols given in [2, pg. 36-39]. 1

Definition II.1. For a Channel N let the stochastic
transition matrix be the matrix whose elements Nx0,y0

give the probability that any bit x0 ∈ {0, 1} is changed
to y0 ∈ {0, 1}. Applying this matrix to every bit in our
message x ∈ {0, 1}n gives our output y ∈ {0, 1}n. We
denote the probability of N mapping x to y in this way
by Nx,y.

If N is a discrete memoryless channel (DMT), this ma-
trix completely characterizes N . We assume that N is
known by Alice so she can simulate the channel locally.

Theorem II.2 (CRST on Binary Channel). There exists
a simulation protocol Sn that can simulate a channel Nn
with capacity C for some message x of length n. Let R
be a sequence of randomly chosen bits which are shared
between the sender and the receiver (Alice and Bob re-
spectively). let ε > 0 be a constant. Sn simulates the
channel Nn in the precise sense that

∀n,x,y(Sn)x,y = (Nn)x,y (3)

Denote the number of bits sent from Alice to Bob mn(x).
There is a tight bound on mn given by

lim
n→∞

max
x∈{0,1}n

P (mn(x) > n(C + ε)) = 0 (4)

Proof Outline. For each string s, let Z(s) be the count
the number of 0’s in s. Let Ck be the channel capacity
for an input with k zeros. We define the protocol via the
following steps.

1. Before Alice receives the message, Alice uses her
knowledge of N and the reservoir of shared ran-
domness to form a set of 2n(Ck−ε/2) tuples Sk =
{(s,N(s))i,k : Z(s) = k} with s a random string of
length n which she shares with Bob. She repeats
this process until there is 1 set of tuples for each
possible Z(x). So then Alice and Bob have a list
of outputs of N , for each value the entropy of the
message can take.

2. Alice and Bob separate and Alice obtains the mes-
sage x.

3. Alice calculates Z(x) and sends Z(x) to Bob using
o(n) bits of communication.

1 If the reader finds these proof outlines unsatisfactory they are
referred to the mathematically precise proofs given in [1, pg.
15-19] although they use the theory of types which has been
explicitly avoided here because of its complexity.

4. Alice runs the message through the Channel simu-
lation, obtaining N(x). 2

5. Alice calculates the Hamming distance, d = |x −
N(x)|.

6. Alice attempts to find an element in the pre-
arranged set SZ(x) such that |x−y| = |x−N(x)| =
d.

(a) If one exists, she sends Bob the index of the
string N(x′) with 0 appended to the front.
The message 0i is of order n(CZ(x′) + ε/2).

(b) If multiple strings are found then she picks a
random one and performs (a).

(c) If there are no suitable strings she sends Bob
the string 1N(x).

7. Bob either uses the index and Z(x) to obtain N(x′)
or uses N(x).

Firstly, we must make plausible is that Sn is, in fact, a
simulation. If Alice sends 1N(x) then it is trivial. In
the other case Bob receives a string N(x′) which has a
hamming distance equal to that of N(x). The hamming
distance d measures the number of errors so strings, so
strings with the same hamming distance as x are equally
likely. Thus, we always produce a string which has equal
likelihood of being produced as N(x) satisfying equa-
tion (3).

Next, we look at the claim equation (4). We know
that so long as Alice does not have to send N(x′), equa-
tion (4) is satisfied. So we must make plausible that
the set SZ(x) contains a string with |x − N(x′)| = d as
n → ∞. This can proved with a straightforward but
calculationally strenuous counting argument by counting
the number of errors and the probability that one of the
guesses in step 4 will have the correct hamming distance.
Then we can see that as n →∞, 2n(Ck−ε/2) guesses will
be sufficient for the probability of failure to go to 0.

C. Related Results

Corollary II.2.1 (Simulate Noise with Noisy Channel).
Let N1 and N2 be channels with capacities C1 and C2

respectively. With an infinite reservoir of shared infor-
mation Alice and Bob may simulate N2 with N1 if and
only if C2 ≤ C1 with unit asymptotic efficiency.

This can be justified by noting that equation (2) on
the preceding page gives the capacity as a maximum over
possible inputs. By simulating noise locally as in theo-
rem II.2 we are only limiting the amount of messages

2 One might think that Alice would simply send this message to
Bob but that would require more communication between them
than promised.
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that can be sent; thus the ability of N1 to send simulated
randomness C1,RN2

is less than C1. However, if C2 > C1

then information must necessarily be lost when transmit-
ting the message over N1, so we must have C1 ≤ C2.

From this we can define the capacity of N1 to simulate
N2 in the presence of infinite shared randomness via the
simple formula

CR =
C1

C2
. (5)

A similar corollary exists for the quantum case and
follow directly from the use of entangled capacity and
the QRST.

III. INGREDIENTS FOR THE QUANTUM
REVERSE SHANNON THEOREM

A. General Definitions

Let P (H) denote the set of positive semi-definite op-
erators on H and take S=(H) = {ρ ∈ P (H) : tr(ρ) = 1}.
We define S≤(H) analogously so that we may express
certain tensor products more simply and avoid normal-
ization in some cases until it is needed. For ρ ∈ S=(H)
define the Von Neumann entropy S as

S(ρ) = − tr(ρ log(ρ)) (6)

and the mutual information of a density matrix ρAB ∈
HA ⊗HB as

I(ρAB) = I(A : B)ρ = S(ρA) + S(ρB)− S(ρAB) (7)

For notational brevity we will also use |A| = dim(HA),
ρA = trA(ρAB), and |φ〉〈φ|A = φA when applicable. The
fidelity of 2 density matrices ρ and σ

F (ρ, σ) = tr(
√
ρ, σ) (8)

can be used in the definition of fidelity for a quantum
channel

F (E , ρ) = inf
|φ〉ρ,R

{F (|φ〉ρ,R , (E ⊗ IR) |φ〉ρ,R)}. (9)

Here |φ〉ρ,R is a purification of ρ with respect to some
reference system R and IR is the identity operator over
R.

In contrast to the classical theory, the capacity of quan-
tum channels cannot be characterized by a single param-
eter. It was only in 2001 when Bennet et al. [2] found
that if unlimited entanglement3 between Alice and Bob

3 In this case Bennett et al. meant a pair of shared Bell states,
but we will use this result to prove things about embezzlement
states later.

is allowed the capacity or the so called takes a familiar
form

CE(N) = max
ρ∈Hin

S(ρ) + S(N(ρ))− S((N ⊗ I)(φρ))

= I(A : B)ρ. (10)

Here Hin is the Hilbert space of all possible density ma-
trices that Alice can send and the quantity (N⊗I)(φρ) is
a purification of Bob’s half of the initial entangled state.
In other words, for some reference Hilbert Space Href we
have φρ = Hin ⊗Href and we run Alice’s portion of the
pure state through N and do nothing to Bob’s portion.
Also note that we have shifted over from the Shannon
Entropy to the Von Neumann entropy. Although equa-
tion (10) is a statement about quantum channels it is
a capacity with respect to classical bits, so it has the
same meaning as the capacities discussed in section II on
page 1.

The quantum relative entropy for ρ ∈ S≤(H) and σ ∈
P (H)

D(ρ||σ) = H(ρ)− tr(ρ log(σ)), (11)

the mutual information can be extended for ρ ∈ S≤(H)
without change and extend the definition

I(A : B)ρ = D(ρAB ||ρA ⊗ ρB). (12)

Here we see our first use of S≤(H) in this rather simple
formula.

Although many of these definitions will not be used in
this proof they are abundant in [3] and thus will be very
useful if a more rigorous proof is desired.

B. The Tools of One-Shot Proofs

In classical and quantum information theory, quanti-
ties are often defined and developed around notions of
arbitrarily large communication. However, when deal-
ing with one-shot theorems, we wish to find equivalent
notions for a single communication like the relative max
entropy

Dmax(ρ||σ) = inf{λ ∈ R : (2λσ − ρ) ∈ P (H)}. (13)

where ρ ∈ S≤(H) and σ ∈ P (H). We also define the
conditional min-entropy where ρAB ∈ S≤(H) as

Hmin(A|B)ρ = − inf
σB
Dmax(ρAB ||IA ⊗ σB) (14)

These are a subset of entropy measures for one-shot sys-
tems known as As one can see, these measures of entropy
depend on extremizing a quantity over a set of states. If
we are going to make statements about the space where
we take extremes, it is highly useful to have a notion
of distance. This can be obtained via the generalized
fidelity

F̃ (ρ, σ) = F (ρ, σ) +
√

(1− tr(ρ))(1− tr(σ)). (15)
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where ρ, σ ∈ S≤(H). From this we obtain the notion of
distance given by

P (ρ, σ) =
√

1− F̃ 2. (16)

In this paper, when we make statements about equality it
is generally done in terms of this distance operator. It is
clear to see that in the case of tr[ρ] = 1 these definitions
simplify to the normalized equivalent. If ρ ≈δ σ then
F̃ (ρ, σ) < δ and visa versa.

Lemma III.1 (Bound on Purified Trace distance).

1

2
||ρ− σ||1 ≤ P (ρ, σ) (17)

Because we will be making statements about channels,
it will be useful to have a notion of distance on channels
as well.

Definition III.2. (Diamond Norm) The Diamond norm
is a norm of CPTP maps defined by

||E||� = sup
ρ
||(E ⊗ IK)(ρ)||1 (18)

and this norm induces a distance measure on the space
of CPTP maps called the Diamond Distance given by

D�(E ,F) = ||E − F||� (19)

Where E and F are quantum channels (CPTP maps) and
ρ ∈ S≤(H).

Proof of the norm axioms will be omitted for brevity
however one may find a great explanation in [12]. 4 As
with many of the measures in one-shot quantum infor-
mation, the presence of a maximum in this formula can
be quite cumbersome. Thus we will endeavor to find a
bound for this norm which we can use to bound the Dia-
mond Distance. This is the purpose of the Post-Selection
technique found in subsection III D on page 6. 5

C. Quantum State Splitting

One of the biggest hurdles of proving the QRST is the
proper use of entanglement. Normally, entanglement is
shared between Alice and Bob in the form of ebits (i.e.
shared Bell states). However, [1] proved that these states
are not sufficient to prove the QRST because entangle-
ment cannot be discarded without excessive communica-
tion or introducing error.6 The Quantum State Merging
(QSM) algorithm given by [5] solves this problem by us-
ing embezzlement states and local quantum operations
to reduce the amount of communication needed between
Alice and Bob.

4 Watrous calls the diamond norm the ’bounded trace norm’ in
these course notes.

5 A complete, yet sparse proof can be found in [6]
6 A proof of this has been omitted here in favor of brevity.

Definition III.3. We define the embezzlement state of
index k as

|µ(k)〉AB =
1√
G(k)

k∑
j=1

1√
j
|jj〉AB (20)

where

G(k) =

k∑
j=1

1

j
. (21)

We have defined these embezzlement states because of
their ability to produce entanglement in other states via
the following theorem proved in [11].

Proposition III.4 (Entanglement Without Communi-
cation). Let |φ〉AB be an ebit with Schmidt rank m.
For ε > 0 and the local transformations XA→AA′ and
XB→BB′ ,

(XA→AA′ ⊗XB→BB′)µ(k)AB(XA→AA′ ⊗XB→BB′)
†

≈δ µ(k)AB ⊗ |φ〉〈φ|AB (22)

as k →∞ and with δ > 0.

Proof Outline. The proof of this relies on showing that
there exists a state |w(k)〉 which both approximates |µ〉k
in the sense that as k → ∞, | 〈µ(k)AB |w(k)〉 | → 1 and
|w(k)〉 can be re-arranged into |µ(k)〉AB ⊗ |φ〉AB via lo-
cal linear operations7. This will leave the embezzlement
state unchanged in the presence of infinite entanglement
and give us the Bell state we required by local operations.
The full proof of this is delegated to [11]. This process
can be repeated to produce N ebits with error Nδ.

Since we assume that we have “unlimited entangle-
ment”, we generally take this to mean that this error is
0.8

In the following subsection we describe Berta’s proof
of Quantum State Splitting with embezzling states. This
technique uses entanglement and quantum communica-
tion in order to change two bipartite states ρHA ⊗ ρHB
shared by Alice and Bob into a general state ρHAHB for
relatively small communication costs.9 We will use this
later as a method of transferring a density matrix E(ρA)
which Alice has simulated to Bob.

Theorem III.5 (Quantum State Splitting with Em-
bezzling States [5]). Let ε > 0, ε′ ≥ 0, δ > 0 and
ρAA′R ∈ S≤(HAA′R) be a pure state. A Completely Pos-
itive Trace Preserving (CPTP) map E is called a One-
Shot State-Splitting Protocol of ρAA′R if it allows only

7 specifically by re-arranging basis vectors in the Schmidt compo-
sition of |µ(k)〉AB ⊗ |φ〉AB

8 [3] has a much more rigorous treatment of this.
9 State Splitting is often described in [5] as the dual to quantum

state merging. A process which essentially accomplishes the in-
version of state merging.
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Figure 1: A Graphical representation of the state splitting
process. Alice starts with systems A A′ and A1 and uses
local isometries to create the entangled part of Bob’s state.
She sends this to Bob who uses local isometries to merge these
two subsystems to create B. Credit for this figure goes to [5].

local operations for Alice and Bob using a δ-embezzling
state µAB and communication of

q ≤ 1

2
Iε
′

max(A : R)ρ + 2 ∗ log
1

ε
+ 4 + log log |A′| (23)

qubits to produce

(E ⊗ IR)(ρAA′R ⊗ µAB) ≈ε ρABR. (24)

Where A′ is the part of Alice’s system which is decoupled
from the reference system R and sent to Bob via some
identity channel IA′→B ⊗ IAR. ρABR is a pure state.

Because of the complicated nature of this proof, at
times the reader will be referred to [5, pg. 5-13] for con-
crete proofs of lemmas which will be made plausible here.

Proof. This protocol can be broken up into several steps

1. Decompose ρAA′R into its eigenvectors while ignor-
ing the eigenvectors whose eigenvalues are small.
The reader may recognize this as a sort of approx-
imate spectral decomposition.

2. Categorize these eigenvectors into classes based on
the size of their eigenvalues and label these classes
by i. Let

∣∣ρi〉 be the linear combination of all the
eigenvectors in class i weighted by their eigenvalues.

3. Alice uses her embezzlement states to create the
appropriate amount of Bell states for each of the
new vectors created.

4. Alice uses a local isometry to rearrange the states ρi

and the Bell states into the system that she wants
to send to Bob called ρiB2

.

5. Alice sends the resulting systems ρiB2
to Bob along

with the information as to how to use his embez-
zlement states to create the other half of the Bell
states the Alice created.

6. Now that Bob has these systems he can use his
embezzlement states in order to create the proper
Bell states.

7. Bob applies a local isometry on his Bell states and
ρiB2

to construct ρ̃B . ρ̃B is a state which approxi-
mate the spectral decomposition of ρB while leav-
ing off small eigenvalues as in step 1. Thus, our
whole system when purified will be ρABR.

Because of the simplicity of the proof, we will show
that steps 1 and 2 create an acceptable approximation to
ρ.

Let PA′,i be the projectors onto the eigenstates of A′

with eigenvalues in χi = [2−(i+1), 2−i] where 0 ≤ i ≤
imax = d2 log |A′|−1e and let P be the projector onto all
the other eigenvectors.10 Let Ei be the set of eigenvalues
in χi. It can be easily seen via spectral decomposition
that

tr(PA′,iρA′) =
∑
x∈Ei

x = pi (25)

Now we define
∣∣ρi〉 = p

−1/2
i P iA′ |ρ〉AA′R and

|ρ̄〉AA′R =
1
√
γ

imax∑
i=0

√
pi
∣∣ρi〉

AA′R
(26)

where γ is simply a normalizing factor. Next we calculate

P (ρ̄AA′RρAA′R) =

√√√√1−
imax∑
i=0

pi =
√
p (27)

where p = tr(PρA′). It is easy to see from equation (25)
that

p =
∑
x∈Ei

x ≤
∑
x∈Ei

2−2log|A′| = |A′|2−2log|A′| =
1

|A′|
(28)

10 The ones whose eigenvalues are in [2−2 log |A′|, 0] because the
sum of the eigenvalues of ρA′ must be less than 1.
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So now we have that

ρAA′R ≈|A′|− 1
2
ρ̄AA′R (29)

exactly as in [5, pg. 9].
The next step in the proof is to characterize the cost of

sending these states from Alice to Bob. This process is
rather lengthy and is best left to the original proof. In [3]
Berta notes that this process is the inverse of quantum
state merging, a more well known process. By using this
process in reverse for each of the parts of the system ρi

he obtains the quantum communication cost

q = max
i

⌈
1

2
(H0(A′)ρi −Hmin(A′|R)ρi) + 2 log

1

ε

⌉
+ logd2 log |A′|e. (30)

This can then be simplified to get the final bound on the
communication

q ≤ max
i

⌈
1

2
Iε
′

max(B : RR′)(E⊗n⊗I)ζn)

⌉
+ 2 log

1

ε′
+ 4 + log n+ log log |B|. (31)

D. The Post-Selection Technique

The Post-Selection Technique (PST) was first given in
2008 by Christandl et al. in [6]. The PST allows one to,
in some sense, determine the probability that two chan-
nels E and F will be distinguishable from one another by
testing their action on a purification of DiFinetti states.

Definition III.6 (Difinetti States [6]). Define the
DiFinetti State ζn as follows where σ ∈ S=(H)

ζn =

∫
σ⊗nµ(σ) ∈ S=(H). (32)

and µ is the probability measure over states.

It is not important for the reader to understand this
formula completely, however it is important to see that
this state has symmetry in exchanging σ meaning it is
symmetric under permutations.

The following proof is a simplification of the proof of
the Post Selection technique that can be found in [6]. For
our purposes it is sufficient to define the DiFinetti state
to be the state which satisfies this property.

Lemma III.7. Let ΠH be the set of all permutation
maps on a Hilbert Space H. Define Sym(H) = {ρ ∈
H : π(ρ) = ρ ∀π ∈ ΠH}. Now take K ∼= H and let
ρHnKn ∈ Sym(H ⊗ K) and we will have that the for a
purification of the DiFinetti State ζnHnKnR

ρHnKn = gn,d(IHnKn ⊗ T )(ζnHnKnR). (33)

Here R is simply a reference system which purifies
ζnHnKnR and T is a CPTP which does not increase the
trace norm. gn,d is a constant which depends only on n
and d = dim(H).

Next, we give a statement and proof outline of the Post
Selection Technique for bounding the Diamond Norm

Theorem III.8 (Post Selection [6]). Let E ∈ H have
there property that ∀π ∈ ΠH ∃Kπ ∈ K ∼= H such that
E(π(ρ)) = Kπ(E(ρ)) for all density matricies ρ. Then we
have that

||E||� ≤ gn,d||(E ⊗ I ′′R)(ζHR′′)||1. (34)

Where d = dimH and R′′ is a purifying reference system.

Proof. Define

ρ̄HnRR′ =
1

n!

∑
π

(π ⊗ IR)(ρHnR)⊗ |π〉〈π|R′ . (35)

Where the summation is over all the possible permuta-
tions and |π〉 are simply orthogonal basis vectors in the
reference space chosen to have the correct dimension.
Note that ρ̄HnRR′ can be purified using R and R′. It
is easy to see that this new density matrix will be in-
dependent of permutations and thus, so are its partial
traces. By inspection we note that ρ̄Hn will be permu-
tation invariant. Thus we may purify it using elements
of K so that it can be written in terms of matrices in
Sym((H⊗K)⊗n). Because ρ̄Hn corresponds to 2 separate
purifications we know there is a local isometry between
the two which we will label (IH ⊗ G). All that is left is
to make an inequality chain and use lemma III.7.

||(EHn ⊗ IR)ρHR||1
= ||((EHn ◦ π)⊗ IR)ρHR||1 (36)

=
1

n!

∑
π

||((EHn ◦ π)⊗ IR)ρHR||1

By the definition of ρ̄HnRR′ we have

||(EHn ⊗ IR)ρHR||1
= ||(EHn ⊗ IR)ρ̄HnRR′ ||1
= ||(EHn ⊗ G)ρ̄HnKn ||1 (37)

≤ ||(EHn ⊗ IKn)ρ̄HnKn ||1

where the last one in the chain is because CPTP maps
cannot increase the trace norm [12]. Finally we apply
lemma III.7 to obtain

||(EHn ⊗ IKn)ρ̄HnKn ||1
= gn,d||(EHn ⊗ TKnR′′)ζHnKnR′′ ||1 (38)

≤ gn,d||(EHn ⊗ IKnR′′)ζHnKnR′′ ||1

Where the last step here is the same as the last step in
equation (37).
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E. Symmetrization of Quantum Channels

In our proof of theorem III.8 on the previous page we
used the fact that our channel E is permutation invariant.
Of course, this does not apply to all quantum channels so
we must employ a technique for making a channel permu-
tation invariant in the sense given in theorem III.8 on the
preceding page. This technique is called Symmetrization
and was first given in [6].

This is done by applying a random permutation to an
input of the channel E which is known by both Alice and
Bob. Alice and Bob may generate shared randomness by
creating ebits using embezzlement states and measuring
each state. We want E to satisfy the following condition
as given in theorem III.8 on the previous page

E(π(ρ)) = Kπ(E(ρ)) (39)

with the same notation. Let us assume that E is not per-
mutation invariant and split it up into E = πE ◦Ẽ where Ẽ
is permutation invariant and πE is the permutation done
by E . Next, introduce the random permutation π̄ gen-
erated from shared randomness between Alice and Bob
and we obtain

πE(Ẽ(π̄(ρ))) = πE(Kπ̄(Ẽ(ρ))) = Gπ̄,πE (πE(Ẽ(ρ)) (40)

by the symmetry of Ẽ whereGπ,πE (ρ) = πE(Kπ̄(π−1
E (ρ))).

Simplifying, we get

E(π̄(ρ)) = Gπ̄,πE (E(ρ)) (41)

This equation is of the form equation (39) and thus sat-
isfies symmetrization. Note that Bob may reconstruct
Gπ̄,πE so long as he uses the shared random bits and has
knowledge of πE .

F. Carathéodory’s theorem and DiFinetti States

The following is taken from lemma D.5 and D.6 of [5,
pg. 29].

The Post Selection Technique is an extremely power-
ful tool for proving bounds on quantum channels. How-
ever, in the original statement of the QRST Bennet et
al. put thier bound in terms of a maximum over a set
of states. In order to convert back from purification of
DiFinetti states to a maximum over a set of states Berta
uses Carathéodory’s theorem.

Theorem III.9 (Carathéodory’s Theorem [7]). let
Conv(P ) be the convex hull of P a set of points in Rn
space. For x ∈ Conv(P ) we may find Conv(P ′) ⊂
Conv(P ) such that x ∈ Conv(P ′)

This is an elementary result in convexity theory so the
proof will be delegated to [7].

Lemma III.10. For the a purification of the DiFinetti
state, we may write

ζnAR =

(n+1)2|A||R|−2∑
i=0

pi ∗ (ωi)⊗nAR (42)

where (ωi)AR
⊗n ∈ S=(H) and the 0 < pi,

∑
i pi = 1 are

a probability distribution.

Proof. By inspection one may see that ζnAR ∈ Sym((HA⊗
HR)⊗n). From [6, pg. 3] we see that the dimension of this
set is bounded by |Sym((HA⊗HR)⊗n)| ≤ (n+1)|A||R|−1.
Because this space is complex it is isomorphic to a real
dimensional space of (n+1)2|A||R|−2 dimensions. Let ξnAR
be the equivalent of normalized density matrices in the
real space we have just constructed. By theorem III.9 we
may write real space analog of ζnAR as a sum of ξ’s. Thus,
we have that we may write equation (42).

G. Quantum Teleportation

It is fairly easy to see that quantum state splitting
will take care of the communication costs for the QRST.
However Bennett et al. [2] found that CE contains all the
interesting properties. Thus, we must convert our quan-
tum communication costs into classical communication
costs using a well known technique: Quantum Telepor-
tation. A short review is given below 11

Theorem III.11 (Quantum Teleportation). We may
send one qubit |ψ〉 from Alice to Bob in exchange for
2 qubits of classical communication and 1 Bell state.

Proof. Let ρA be the half of the Bell state held by Alice
and similarly for Bob. The algorithm is given by the
following simple quantum circuit.

Alice

|ψ〉 • H • a

ρA • b

ρB Z |ψ〉
Where the dashed box represents all the operations on

Alice’s side and outside the box are operations on Bob’s
side. It can be shown by simple matrix analysis that this
circuit will yield |ψ〉 on Bob’s side of communication.

By proposition III.4 on page 4, embezzlement states
allow Alice and Bob to create as many Bell states as they
need. So we may use theorem III.11 to trade quantum
communication for double the classical communication
ad infinitum.

11 For full explanation see [8, pg. 26] for details.
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H. Stinespring Dilation

This section will serve as a brief reminder of Stine-
spring’s Dilation Theorem for the expression of a quan-
tum channel. We may represent a quantum channel in
its Kraus operator form

E(ρ) =

m∑
i=0

AiρA
†
i . (43)

Then it is easy to see that we may re-arrange these op-
erators into block vectors

U† = (A1A2...Am) (44)

So that we have

E(ρ) = tr1(UρU†). (45)

This is called the Stinespring form and it will be used in
our proof of the QRST.

IV. THE QUANTUM REVERSE SHANON
THEOREM

A proof of the Quantum Reverse Shannon theorem
given in [5] will be reviewed in this section. The goal of
this will be the review the proof without weighing down
the concepts with technical lemmas.

Definition IV.1 (One-Shot Reverse Shannon Simula-
tion). Let E : HA → HB be a channel between the Hilbert
spaces of Alice and Bob respectively. A CPTP map P
with

||E − P||� ≤ ε (46)

for ε > 0 is called a One Shot Reverse Shannon Simu-
lation of E with error ε. This channel will make use of
a δ-ebit embezzling state and classical communication c
between Alice and Bob.

Theorem IV.2. For P a One Shot Reverse Shannon
Simulation of E error ε after an asymptotic number of
uses12 denoted P⊗n with

lim
n→∞

εn = 0 (47)

where n is the number of uses of P and E and εn are the
errors as defined in equation (46) with E and P replaced
with E⊗n and P⊗n respectively. We will also have that

lim
n→∞

cn
n
≤ CE (48)

12 A “use” of a channel appears to be loosely defined as sending a
single density matrix across the channel. But the overall defini-
tion seems to be ambiguous and M. Berta’s paper could benefit
from some clarification on this matter.

with CE defined in equation (10) on page 3 as the capacity
of E and cn is the number of bits sent after n single uses
of P.

Proof Outline. First, we will construct a CPTP map P
which satisfies equation (47) in the limit of repeated
uses. In order to simplify the condition imposed by equa-
tion (46) we use the Post Selection Technique

||(E⊗n − P⊗n ⊗ IRR′)ζnARR′ ||1 < εg−1
n,k (49)

Where ζnARR′ is a purification of the DiFinetti State ten-
sored to itself n times and where R and R′ are the refer-
ence spaces used to purify ζn. To show 47 we will look
at the Stinespring form of E⊗n on ζn

ζnBCRR′ = (UnA→BC ⊗ I ′RR′)ζnARR′(UnA→BC ⊗ I ′RR′)†
(50)

Where we have simplified the action of the unitary on the
reference system to the identity due to its lack of effect on
the overall calculation. This step is exactly the process
of Alice locally simulating the channel. Unfortunately,
M. Berta does not give much explanation beyond this as
to how the channel would be simulated locally. However,
I would speculate that it would be akin to the classical
case where some sort of matrix operation which is known
by Alice is performed on her system.

From the proof of theorem III.5 on page 4 we get that
it is possible to create a protocol to create P with the
following trace distance

P ((E⊗n ⊗ IRR′)ζnARR′ , (P⊗n ⊗ IRR′)ζnARR′)
≤ ε+ ε′ + δn log |B|+ |B|n/2 (51)

and from lemma III.1 on page 4 we see that

||((E⊗n−P⊗n)⊗ IRR′)ζnARR′ ||1
≤ 2 ∗ (ε+ ε′ + δn log |B|+ |B|n/2) (52)

Because these constants were chosen arbitrarily we
may re-define them in terms of each other to get the
following expression

||((E⊗n−P⊗n)⊗ IRR′)ζnARR′ ||1
≤ εgn,d. (53)

For a more rigorous treatment of this step see [5, pg. 15-
16]. Thus, by the post selection technique (theorem III.8
on page 6) we have equation (49).

Next we worry about the communication costs of our
protocol. The proof of these bounds requires many lem-
mas and actually constitutes a decent chunk of the lem-
mas presented in [5]. Rather than bog ourselves down in
the details of how this is done a review will be given here
so that the reader may more easily understand the proof
given in [5].

We obtain from the state splitting process that

qn ≤
1

2
Iε
′

max(B : RR′)(E⊗n⊗I)ζn)

+ 2 log
1

ε′
+ 4 + log n+ log log |B| (54)
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is a bound on the quantum communication costs. We
use quantum teleportation to put this in terms of the
classical communication costs

cn ≤ Iε
′

max(B : RR′)(E⊗n⊗I)ζn)

+ 4 log
1

ε′
+ 8 + 2 log n+ 2 log log |B|. (55)

Berta then uses several lemmas (See [3, pg. 16-17]) to
prove that

cn ≤ N ∗max
φ

I(B : R)(E⊗I)φ +O(
√
N +

√
− log ε′)

(56)

Where we have used lemma III.10 on page 7 to replace
ζ with a maximum over φ ∈ S=(HAR). Thus when we
take the limit as n→∞ we get

lim sup
ε′→0

lim sup
n→∞

cn
n
≤ max

φ
I(B : R)(E⊗I)φ = CE (57)

By the definition of I we have equation (48) on the pre-
ceding page and the theorem is proved.

Now we justify the analogous result to corollary II.2.1
on page 2.

Corrolary IV.2.1. Let E1 and E2 be channels with en-
tanglement assisted capacities C1 and C2 respectively.
With an infinite reservoir of shared information Alice
and Bob may simulate E2 with E1 if and only if C2 ≤ C1

with unit asymptotic efficiency.

proof outline. Because the QRST uses classical capacities
we may justify this by the same logic as before. We
note that the capacity is a maximum of all the possible
density matrices that can be sent over a channel. Then

it follows from C2 ≤ C1 that E2 can only transfer less
information than E1 for any input. The QRST allows us
to simulate any noise for low cost and thus, we may add
the randomness into the channel required to simulate the
channel E2.

V. CONCLUSION

It is a testament to the conceptual simplicity of Berta’s
proof of the QRST that, once it’s lemmas are proved, the
overall argument can be reduced to a single page. The
ability to simulate a quantum channel is a fairly surpris-
ing result given the diversity of errors that may arise in
quantum communication. Because of this diversity of er-
rors, it perhaps is not so surprising that there are many
parts to the proof of the Quantum Reverse Shannon The-
orem. Berta’s proof in [5] makes the proof accessible,
however it suffers from the use of a few lesser known
procedures. Without explanations of each of these pro-
cedures readily available, his proof appears to lack sim-
plicity. Hopefully, having a justification for all of these
techniques in one paper has made this proof more com-
prehensible, perhaps at the cost of precision
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