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We examine the volume difference between a convex body K and it’s surface body Ks in dimension
2. First, some background and definitions are given. Then we look at several examples leading up
to a surprisingly simple formula for the volume difference in a polygon in dimension 2. We find
that in the polygonal case lim

s→0
Voln(K/Ks) =

∑
i sin(θi)s

2/6 where θi are the angles made at the

vertices of the polygon. Moreover, it appears that all convex bodies in R2 have lim
s→0

Voln(K/Ks)

is of order s2. This is in contrast to the floating body which may admit a variety of dependencies
based on the shape of the body.

I. INTRODUCTION

The surface body is defined to be the intersection of all half-spaces H of hyperplanes which cut off a distance s
from the boundary of a given convex shape K. In this paper we will examine the behavior of the volume difference
between several convex bodies and their surface bodies and compute Ks. Then we generalize the techniques used in
II to find a formula for the volume difference in an arbitrary polygon.

II. EXAMPLES

A. Circle

let

B = {x ∈ R2 : ||x||2 ≤ r}. (1)

By symmetry Bs must be a ball which we will denote as having radius rs. If we have any hyperplane cutting off an
arc of length s then we can find all the other ones cutting or an arc length of s by simply shifting the hyperplane along
the boundary of the circle. Thus, we know that the surface body itself must be a circle since all of these hyperplanes
have the same smallest distance from the hyperplane to the center of the circle. An easy calculation shows that

rs = r cos (s/2r). (2)

Now we look at the volume difference

Vol2(B)−Vol2(Bs) = πr2 sin2((s/2r)) ≈ π

4
s2. (3)

It is rather surprising to note that the volume difference is independent of r. In the appendix we show that in all
other dimensions the volume difference for the ball is dependent on r.

B. Square

let

S = {x ∈ R2 : ||x||∞ ≤ `}. (4)

For s small, it is sufficient to consider one vertex of the square and by symmetry, we compute the volume difference.
We shift the square so that the vertex under consideration lies at the origin and the square lies in quadrant I. If
s < `/2 then we know that the surface body will touch the side of the square at a distance s from the origin. This is
because s is as far as a hyperplane cutting off a distance s from the boundary may go from the origin.
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Figure 1: Surface bodies for the square and the equilateral triangle. Note that the surface body for the triangle is locally
symmetric about the line y = tan(π/6) and thus the area difference can be evaluated by integrating in 2 separate parts

A hyperplane that cuts off surface area s is a line, y = mx + b, that passes through points P1 = (x1, 0) and
P2 = (0, y2) which satisfy s = x1 + y2 =⇒ x1 = s− y2. Thus we get

b = y2 and m =
y2

y2 − s
. (5)

Plug these in to obtain thee result for a general hyperplane cutting off a set of length s.

y =
y2

y2 − s
x+ y2. (6)

Thus we have a family of curves f(x, y, y2) = y2x+ y2(y2 − s)− y(y2 − s). Now we compute the envelope by setting

f = 0 and ∂f
∂y2

= 0:

∂f

∂y2
= x+ 2y2 − s− y = 0 =⇒ y2 =

s+ y − x
2

. (7)

Substituting this back into f will give

(x− y + s)2 − 4sx = 0. (8)

Note that we will only examine this curve within the square defined by x, y ∈ [0, s].
Now to compute the volume difference, we compute the following integral and multiply by 4:∫ s

0

x+ s− 2
√
sxdx =

x2

2
+ sx− 4

3s
(sx)3/2|s0 =

s2

6
(9)

Thus for sufficiently small s we have that

Vol2(S)−Vol2(Ss) =
2s2

3
(10)

Again, we find that the result is scale invariant.

C. Equilateral Triangle

Define the equilateral triangle T to be of side length t with it’s center at the origin. Similar to the square we can
look at the individual corners of the triangle to find the curve which represents the surface body at each vertex for
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sufficiently small s. If we place one vertex of the triangle at the origin and one side along the x axis we get

s = − b

m
+

√√√√( b√
3−m

)2

+

(
b
√

3√
3−m

)2

(11)

where m and b are the slope and of and x intercept of the hyperplane cutting off a set of length s from the triangle.
This can be simplified to

s = b

(
− 1

m
+

2√
3−m

)
(12)

And thus, the equation which expresses all of the hyperplanes can be parameterized by m and is given by

y = mx+ s

(
m(
√

3−m)

3m−
√

3

)
. (13)

Next we calculate the envelope of this curve by making it into a 2nd order polynomial in m and set the discriminant
equal to 0.

m2(s− 3x) +m
(√

3x+ 3y −
√

3s
)
−
√

3y = 0 (14)

√
3
(
x+
√

3y − s
)2

+ 4y(s− 3x) = 0 (15)

and we have the curve which locally represents the surface body. Solving for y we obtain that

y =
s+ 3x± 2

√
−2s(s− 3x)

3
√

3
(16)

where we only consider x > 2s
3 . Next we evaluate the volume difference between the surface body and the triangle.

We observe that the volume is symmetric across the line y = x tan 15◦ (y = x√
3
). Thus, if we find the intersection

of this line with (16) then we can split the total volume difference into an area given by the boundary of the surface
body and the volume under the curve y = x√

3
. We find the intersection by solving for x and we get that

x =
3s

8
. (17)

We know that the other bound of the integral will simply be s because (s, 0) is the furthest point from the origin
from which we may have a hyperplane which cuts off a set of length s from ∂T (the shaded area in 1). So we evaluate
the integral using (16) with the negative sign.∫ s

3s
8

s+ 3x− 2
√
−2s(s− 3x)

3
√

3
dx =

7s2

128
√

3
. (18)

The other integral is bounded by the line which split the corner∫ 3s
8

0

x√
3

dx =
9

128

√
3s2 (19)

Then we multiply by to to obtain

Vol2(T )−Vol2(Ts) =
1

96

(
27− 10

√
3
)
s2 (20)
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D. Almost Polygonal Bodies

Here we consider a construction for almost polygonal bodies given in [1]. We define a sequence (an)n∈N take the
convex hull of points of the form (±an, a2n) and (±an, 2 − a2n) where (an)n∈N meets some simple requirements for
converging to 0 (see 2 for picture). By the symmetries of the object then we can analyze the surface body using only
one side of it.

Here we consider sequences of positive real numbers such that

1 = a0 ≥ ...an ≥ an+1 ≥ ... ≥ 0 ∀n ∈ N (21)

an−1 − an ≥ an − an+1 ∀n ∈ N (22)

lim
n→∞

an = 0. (23)

However before we look at the behavior we must define when the surface body starts to notice that the shape is
getting smooth. Take the distance between any 2 points along the edge of the body

s =
√

(an−1 − an)2 + (a2n−1 − a2n)2 +
√

(an − an+1)2 + (a2n − a2n+1)2 (24)

and we can simplify it to

s = (an−1 − an)
√

1 + (an−1 + an)2 + (an − an+1)
√

1 + (an + an+1)2 (25)

which suggests the following definition.

Definition II.1 Define ns to be the first n such that

ans − ans+1 < s/4. (26)

Proposition II.2 Let an be a sequence satisfying (21), (22), and (23) and let K(a) be the body discussed in I. Then
∃ a, c, and s0 such that we have for all 0 ≤ s ≤ s0,

1

c
s2 +

1

c
s2ks ≤ Vol2(K/Ks) ≤ cs2 + cs2ks (27)

From [1] we have that the smooth part of the body will behave like

lim
s→0

Vol2(K/Ks)

s2
= C (28)

where C is simply a constant. So we must look at the parts of the body which are polygonal and find an estimate of
the volume differences. To do this we observe that as s → 0 it will become less than any side of the boundary and
thus we only consider the corners of the body. We define a = s/2 to simplify some of the algebra. We may assume
that any hyperplane (line in this case) will cut off between a and 2a from either side of the corner. We will do the
calculation for the a case and the 2a case follows quickly from it.

The cut off area is a triangle with area given by

Aa =
1

2
baha (29)

where ba is the base of the triangle given by the length of the intersection between the hyperplane and the body and
ha is the height of the triangle or the minimum distance hyperplane to the corner.

By the law of cosines and the Pythagorean theorem we get

b2a = a2 + a2 − 2(a)(a) cos θ = 2a2(1− cos θ) (30)

h2a + (
1

2
ba)2 = a2 (31)
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where (31) comes from the fact that the triangle is isosceles. With a small amount of algebra we get from (31) that

h2a =
1

2
a2(1 + cos θ). (32)

By combining this with (29) we obtain

A2
a =

1

4
a4 sin2 θ (33)

and similarly for the 2a case we obtain

A2
2a = 4a4 sin2 θ. (34)

So then we have that

1

8
s2 sin θ < A <

1

4
s2 sin θ (35)

are the proper bounds on A for each of the corners. Next we must add all of the triangles together to get the full area
given by the formula

∑
poly

A <
1

4
s2

ks∑
i=0

sin θi <
1

4
s2ks sin θ0 (36)

where θi are the angles for each of the respective corners. The second inequality comes from the fact that π/2 < θi <
π ∀i and the sequence of θi’s is strictly increasing. Thus we obtain the simple relation that∑

poly

A ∼ s2ks. (37)

Since the total end behavior of the volume differences will be the tighter of the two bounds provided we have that

Vol2(V/Vs) ∼ s2 + s2ks. (38)

But we know that Ks will only increase with s so we get that the smooth portion aways dominates in the small s
limit.

E. Comments on Examples

It is clear to see that all of these bodies admit s2 behavior in which the coefficient is not dependent on scaling. We
will see in the next section that in fact this does hold true for all polygons. However this remains to be shown for all
convex bodies in R2.

The coefficients themselves also seem to be somehow superficially related to the body. Take, for instance, the case
of the circle which admits a factor of π which does not appear in any other of the bodies we have examined. It may
be possible to guess some factors in the coefficient simply by inspection.

III. ARBITRARY POLYGON

In this section we consider the case of the polygon with an enumeration of the angles given indexed as θi. Since we
know that each side is finite we know that s will become smaller than any side and the surface body will touch the
boundary between every vertex. Thus, we may reduce the case of an arbitrary polygon to finding the surface body
around each vertex.

Thus we consider a vertex at the origin with an arbitrary angle θ made between 2 lines one of which lies on the x
axis. We quickly find that out hyperplane will intersect the angle at the points(

− b

m
, 0

)
and

(
b

tan(θ)−m
,

b tan(θ)

tan(θ)−m

)
. (39)
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Figure 2: A diagram of the almost polygonal body given in II D. The body itself is given by the lines inside the outter shape.
note the reflective symmetries of the object and the accumulation points at the origin and (0, 2).

When we calculate the surface area cut off by this hyperplane we get that

s =
b

|sin(θ)−m cos(θ)|
− b

m
. (40)

Next we solve for b and substitute back into the original formula for the hyperplane to get

y = mx+
s

1
|sin(θ)−m cos(θ)| −

1
m

. (41)

Because of the absolute value, now is an opportune time to split our problem into evaluating the acute and obtuse cases.

For the acute case we know that min{cos(θ), sin(θ)} ≥ 0 ≥ m so we have that the quantity sin(θ) − m cos(θ) is
non-negative. Thus we have that

m2(x cos(θ) + x− s cos(θ)) +m(s sin(θ)− x sin(θ)− y cos(θ)− y) + y sin(θ) = 0 (42)

Which we can easily calculate the envelope to be

(s sin(θ)− x sin(θ)− y cos(θ)− y)2 − 4(x cos(θ) + x− s cos(θ))y sin(θ) = 0 (43)

Solving for y we obtain

y =
sin(θ)

(
cos(θ)(x− s)± 2

√
s(cos(θ)(x− s) + x) + s+ x

)
(cos(θ) + 1)2

. (44)

We will evaluate the acute case in much the same way that we did the triangle. We note that the body will be
symmetric about the line y = tan(θ/2) and calculate the intersection. If we do this we obtain that the intersection
point is

x =
s

4
(cos(θ) + 1). (45)

Because we know that the derivative of the surface body cannot be positive when our splitting line intersects it, we
know that only the negative solution to (44) will contribute to the integral. Again, we have that the other bound of
our integral will be s since it is the farthest point the hyperplane can reach to. Thus we must evaluate the integral

∫ s

s
4 (cos(θ)+1)

sin(θ)
(

cos(θ)(x− s)− 2
√
s(cos(θ)(x− s) + x) + s+ x

)
(cos(θ) + 1)2

dx =
s2

96
sin(θ)(5− 3 cos(θ)). (46)

The other integral is considerably easier to evaluate and is given by

∫ s
4 (cos(θ)+1)

0

x tan(θ/2) dx =
s2

32
(cos(θ) + 1)2 tan

(
θ

2

)
. (47)



7

Finally, we obtain that for an acute angle the difference in area is

sin(θ)

6
s2. (48)

A remarkably simple result.

Next we move on to the obtuse case. Here we cannot make any assumptions about the sign of the term inside the
absolute value in (40). To find an answer we look at the domain of m which is relevant to the surface body. Since we
are considering the obtuse angles only we get the condition

0 < m < tan(θ) =⇒ 0 < sin(θ)−m cos(θ) (49)

So we can simply take the absolute value signs away as in the acute case. We may then repeat the same argument
as above until we reach the integrals. We split up our integral into a piece in the first quadrant and another in the
second quadrant. The bounds for the second quadrant are simple if we recall that the surface body can only go a
length s on the line y = tan(θ). Thus we get the bound

x =
s

sec(θ)
. (50)

The integral for the second quadrant will be the the difference between the curve of the surface body and y = tan(θ).
Putting it all together we get

∫ 0

s
sec(θ)

sin(θ)
(

cos(θ)(x− s)− 2
√
s(cos(θ)(x− s) + x) + s+ x

)
(cos(θ) + 1)2

− x tan(θ) dx. (51)

which has value

s2 sin(θ) cos(θ)
(

12 cos(θ) + cos(2θ) + 16
√
− cos(θ)− 5

)
12(cos(θ) + 1)3

(52)

The right side is relatively simple to set up and we get that it’s value is

−
s2 sin(θ)

(
4
(

4
√
− cos(θ)− 3

)
cos(θ) + 3 cos(2θ) + 1

)
12(cos(θ) + 1)3

(53)

which admits no easy simplification. However, when these two pieces are added together we get that the total volume
difference simplifies to

sin(θ)

6
s2. (54)

Thus, we have found that in all cases for sufficiently small s, the volume difference for any polygon will follow the
simple formula

Vol2(K)−Vol2(Ks) =
s2

6

∑
poly

sin(θi) (55)

IV. SUMMARY

It is clear that 2 dimensional shapes admit a very narrow set of behaviors as in the small s limit.
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Appendix: COEFFICIENT BEHAVIOR OF ALMOST POLYGONAL BODY

Now that we have a general formula for the surface body of an angle we may evaluate the coefficient of the surface
body of the almost polygonal body described in II D. We can provide a lower bound to the difference between the
surface bodies by

4 ∗ s
2

6

ks∑
i=0

sin(θi) < Vol2(K/Ks). (A.1)

However, it is easy to see geometrically that eventually this expression will approach the volume difference in the
limit. To evaluate the coefficient we must find a relation between the values of the sequence and the sine of their
angle. A quick application of the formula for a cross product given an angle yeilds

sin(θi) =
ai−1 − ai+1√

(1 + (ai−1 + ai)2)(1 + (ai + ai+1)2)
(A.2)

So then we can substitute it back in to get that

Vol2(K/Ks) =
2s2

3

∞∑
i=1

ai−1 − ai+1√
(1 + (ai−1 + ai)2)(1 + (ai + ai+1)2)

(A.3)

should approximate the volume difference as s→ 0. From that it is an exercise in calculus to obtain the bounds

1

5
C(a1) < lim

s→0

Vol2(K/Ks)

s2
< C(a1) (A.4)

where

C(a1) =
2(1 + a1)

3
(A.5)

using the fact that 0 < ai < 1 ∀i. So then our possible outcomes for the coefficient are actually severely limited. If
we relax our bounds a little bit we can obtain the even simpler formula that works for every sequence that we may
consider

2s2

15
< Vol2(K/Ks) <

4s2

3
. (A.6)

Appendix: VOLUME DIFFERENCE BEHAVIOR OF B2
n

Let rB2
n be the euclidean ball in dimension n with radius r. We begin with the formula given in [1] using the

curvature of a smooth, convex body K in Rn.

dn lim
s→0

Voln(rBn2 /(rB
n
2 )s)

s
2

n−1

=

∫
∂(rBn2 )

κ
1

n−1

f
2

n−1

dµ∂(rBn2 ) (A.1)

where f = 1(see [2]), dn is a constant which depends only on the dimension n, and κ is the Gaussian curvature given
as a function of the boundary. But for a circle we have that κ = 1/r. Thus we can simplify (A.1) to

dn lim
s→0

Voln(rBn2 /(rB
n
2 )s)

s
2

n−1

=
n|Bn2 |

r
n(n−2)
n−1

. (A.2)

Next we note that by symmetry of the sphere we get that the surface body must also be a ball in dimension n with
radius rs

|rBn2 | − |(rBn2 )s| = |Bn2 |(rn − rns ). (A.3)

Putting these together we obtain

dn lim
s→0

(rn − rns )

s
2

n−1

=
n

r
n(n−2)
n−1

. (A.4)
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Which implies that for s << r we get

rs ∼
n

√
rn − n

dn

(
s2

rn(n−2)

) 1
n−1

. (A.5)

[1] Schütt, C., & Werner, E. (2003). Surface bodies and p-affine surface area. Elsevier Inc. doi:
https://case.edu/artsci/math/werner/publications/surface

[2] f is defined in [1] to be a probability density along the boundary but we are only considering cases with a uniform boundary
so we need not worry about it.
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