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The 2-dimensional quantum Hall effect is one of the most surprising consequences of quantum
mechanics. This experiment measured the Hall and the longitudinal voltages across a AsGe semi-
conductor in an attempt to quantify e2/h. Although a sensible looking graph of the Hall voltage
was obtained, it was found that the measured values for e2/h were off by a scale factor of roughly
8.56. The generally agreed upon value for e2/h is 25818Ω and we obtained 15050 ± 38 Ω. Several
suggestions as to why this is are put fourth including a wrong value for the resistor or a misread
lockin. When the obtained values for the Hall resistance were fitted to different values of e2/h, no
regular pattern was found in the levels observed.

I. INTRODUCTION

The 2-dimensional quantum Hall effect was first pre-
dicted in the 1975 by Ando, Matsumoto, and Uemura
and verified in 1980 by Klaus von Klitzing[1]. Since then
it has been repeated in multiple experiments and is often
used a simple model for the more complicated fractional
quantum Hall effect.

In this experiment, currents were run across a semi-
conductor in an attempt to measure the 2-dimensional
quantum Hall effect in which the Hall resistivity of a ma-
terial is quantized due to energy levels rising above the
Fermi energy. The energy levels of the material are de-
pendent on an external magnetic field which is gradually
increased in order to make the allowed energy states of
the charge carriers move above the Fermi energy. Once
the states are above the Fermi energy, they can no longer
hold charge carriers in the conduction band, increasing
the overall resistivity of the material in discrete levels
based on which bands are below the Fermi energy.

II. THEORY

A. The Classical Hall effect

All of the following subsection is a part of or can easily
be derived from [2].

In order for one to understand the 2-dimensional quan-
tum Hall effect, it is useful to have an understanding of
the classical Hall effect. In the classical Hall effect, a
current is run over a conductor in an applied magnetic
field. The magnetic field induces cyclotron motion in the
charge carriers, causing them to congregate on one side
of the sample as seen in Fig. 1.

The circular motion does not effect the movements of
the charge carriers significantly in the middle of the con-
ductor. However, on the edges (the left edge in the case of
Fig. 1) the charge carriers cannot complete a revolution
due to the boundary conditions and they simply stay on
the side of the sample. This congregation of charge car-

riers changes the overall magnetic field and thus creates
a new voltage across the crystal VH , the Hall voltage.

Working this out precisely is relatively simple. First,
we use the Lorentz force law to conclude that the force
felt by the charges is given by

Fw = evdBz (1)

where e is the charge of the electron, vd is the drift veloc-
ity, Bz is the Applied electric field, and Fw is the force
on the electrons across the width of the sample. Next
we use the fact that F = d× ρ where ρ is some constant
potential to say that

VH =
Fwe

w
(2)

where w is the width of the sample. Next we use the
current across the sample defined in terms of the drift
velocity

I = n · e · t · w · vd (3)

where n is the number density of electrons and t is the
height of the sample to obtain

VH = I
Bz
nte

. (4)

This looks very much like Ohm’s law so we choose to
define

RH =
VH
I

=
1

ne
. (5)

This is the Hall resistance. It is defined in this way for
both the classical and quantum Hall effects.

B. The Quantum Hall Effect

The mathematics in the following section can all be
found in [1].
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Figure 1: A diagram of the setup for a Hall effect (both clas-
sical and quantum). A current is run across a conductor and
the charge carriers are deflected by the magnetic field to one
side of the sample, causing a overall voltage difference across
it. Diagram courtesy of https://en.wikipedia.org/wiki/

Hall_effect.

The 2-dimensional quantum Hall Effect appears much
the same as the classical Hall effect where the cyclotron
motion of the charge carriers causes a change in voltage
across the material.

We consider a 2-dimensional sheet of charge carriers
at low temperature where x is the direction of a current
across the sheet an y is the direction perpendicular to x
in the plane of the sheet. To this we apply the modified 2-
dimensional Schrdinger equation for an applied magnetic
field given by

[
Es +

(i~ + eA)
2

2me
+ U(y)

]
Ψ(x, y) = EΨ(x, y) (6)

where Es is the spin energy, A is the magnetic potential,
me is the mass of the electron, and U(y) is the potential
confining the particles to the sheet which is only depen-
dent on y since we wish for current to move freely in
the x direction. We define our confining potential as the
parabolic equation

U(y) =
1

2
meω0y

2. (7)

Clearly, this potential is not exact, however it is solv-
able and produces the 2-dimensional quantum Hall effect
and is therefore useful for understanding. Note that the
motion in the x direction is that of a free particle and so
the equation can be separated into

Ψ = φ(x)χ(y) (8)

where φ(x) is given by

φ =
1√
L
eikx·x (9)

where k is the momentum of the particle in the x direc-
tion and x is the position in the x direction. If this is
plugged into 6 we obtain

[
Es +

(i~ + eBy)
2

2me
+

p2y
3Me

+
1

2
meω0y

2

]
χ(x, y)

= Eχ(x, y) (10)

where B is the magnetic field. Now we may write down
the eigenvalues in this system as

E = Es + (n+
1

2
)~ω +

~2k2

2me

ω2
0

ω2
(11)

where ω = ω2
0 +|e|B/me, e is the charge of the electron

and n ∈ N are the allowed energy levels of the system.
It is clear to see that the energy levels of the system are
discrete so we can say that there is finite amount of space
for the electrons in the sample. As the magnetic field
increases, the allowed energy levels increase. Because we
are dealing with fermions at a low temperature, we know
that they can only take on states which are below the
Fermi energy. Thus, the allowed energy states increase
in energy while the Fermi energy stays the same, resulting
in jumps in the resistivity of the material whenever one
of the energy levels goes above the Fermi energy.

Now we attempt to find a more concrete way of saying
how much the resistivity jumps when each of the energy
levels goes above the Fermi energy. This can be explained
simply by taking

n = νd (12)

where d = eB/h is the degeneracy of each state and ν ∈ N
is the label of a given energy level. More precisely, d gives
the density of the number of electronic orbits allowed in
the sample. Plugging d in we get that

Bν =
nh

νe
. (13)

Note that only certain levels of the magnetic field cause
changes as predicted by the quantum mechanics above.
Finally, we simply plug in these values for the magnetic
field into the Hall resistance given in (5) to obtain

RH =
h

νe2
. (14)

III. METHODS

The sample was put in a circuit like Fig. 3 in which
measured the voltage across the sample and the voltage
along it using lockin amplifiers. A .1 volt AC signal at

https://en.wikipedia.org/wiki/Hall_effect
https://en.wikipedia.org/wiki/Hall_effect
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Figure 2: A qualitative diagram of the levels where electrons
may sit in the material. As the magnetic field increases in
intensity, the fermi-energy Ef will decrease and the number
of levels that the charger carriers may occupy goes down.
Thus increasing the resistance. K is the momentum of the
particle. Diagram courtesy of [1].

100 Hz was sent across the sample in order to decrease
the noise in our reading. This will be referred to as Vdrive
or the driving voltage.

An AsGe semiconductor was used to approximate a
sheet of electrons like in Fig. 1. Semiconductors work well
here because they often have large band gaps which hold
electrons in place in a sheet, thus effectively removing
the electron’s freedom in one direction.

In order to get a reading of the resistance of the sam-
ple, a large resistance was put in parallel with the sam-
ple so that the current of the system was approximately
constant overall. Thus, when the voltage was measured
along the sample, Ohm’s Law was applied to give the re-
sistance. The resistance used R = 9.8 MΩ is more than
enough to make the resistance change of the material
negligible (on the order of 103) [3].

The voltages across and along the AsGe crystal were
measured using lockin amplifiers with a time constant of
1ms. The sample was placed in a cooling chamber and
first cooled with liquid nitrogen to 77K and then cooled to
4K using liquid helium. After that, the sample was cooled
to 1K by reducing the pressure inside the container using
a pumping system. All results discussed will be assumed
to be taken at 1K unless otherwise specified.

IV. RESULTS

The results contained clear plateaus in the Hall volt-
age and clear peaks in the data taken along the sam-
ple (the longitudinal voltage) as can be clearly seen in
Fig. 4. The plateaus were averaged together along the
colorations shown in Fig. 4. It is clear to see that as
the data goes lower and lower the plateaus are less and

Figure 3: A diagram of the sample and where data was taken.
An AC signal (the driving voltage) is sent across the AsGe
semiconductor and across a resistor. The difference in volt-
ages is measured across and along the sample.

Plateaus Measured in the Hall Voltage

1 7.29± .02 ×10−2 mV

2 4.15 ± .02 ×10−2 mV

3 2.92 ± .02 ×10−2 mV

4 1.91 ± .01 ×10−2 mV

5 1.28 ± .01 ×10−2 mV

Table I: A table of the plateaus of the Hall Voltages found
in Fig. 4 with the rightmost plateau as 1 and the leftmost
plateau as 5. Note that the voltages are very small for what
they should be with a current with a magnitude of 10−5.

less discernible making the possibility of mis-labeling a
plateau larger and larger.

It should be noted that at 4K, anomalous troughs were
found after every plateau in the Hall voltage. However,
these will be omitted from analysis as they disappeared
once the sample was cooled to 1K.

V. ANALYSIS

A. Initial Calculations

From II we expect the plateaus in the resistance of
the longitudinal signal to be multiples of e2/h. To begin
our quantitative analysis, we first must find the current
across the sample. This can easily be done by assuming
that the resistance of the sample is negligible (see III)
and yields

I =
Vdrive
R

=
.1

9.8191× 106
= 1.0204× 10−8A (15)

where error has been neglected as both of these quantities
have errors which are much less than that of the voltages
in table I.
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Analysis of the levels

Levels From

Highest to Lowest

Measured

Hall Resistance

Closest

Levels (ν)

1 7.14 ± .02 ×103 mV 3.61 ± .01

2 4.07 ± .02 ×103 mV 6.34 ± .03

3 2.86 ± .01 ×103 mV 9.02 ± .06

4 1.87 ± .01 ×103 mV 13.8 ± .07

5 1.25 ± .01 ×103 mV 20.5 ± .58

Table II: A table of values calculated using table I and equa-
tions that can be found in II. Note the lack of correspondence
of the calculated levels with any sort of pattern. The closest
levels are the levels calculated using the known value for e2/h
(25818 Ω). If one wishes to calculate the Hall resistances with
the resistance of the sample added in, all one must do is add
.02× 103 to the first Hall resistance and .01× 103 to the rest.
See V B for details on calculation.

Next we simply divide all the values in table I by the
current using (5) to obtain table II. The level values (ν)
were calculated simply by dividing RH by the known
value for e2/h. It is clear to see from table I that there
was little regularity in the levels.

We know from previous experiments that the top level
is likely to be the 2nd level and the rest proceed as mul-
tiples of 2(a remark from Dr. Jesse Berezovsky). Using
this model we can calculate e2/h for each level and find
the mean. If this analysis is performed we get that

e2

h
= 15050± 38Ω. (16)

This estimate is very off from the actual result of 25818Ω
and has an error of

εtot =
| e

2

h − result|
e2

h

= 41%. (17)

However, it is possible that the last 2 plateaus were mis-
judged as they are quite small. If we remove them from
the data we find that

e2

h
= 15908± 48Ω. (18)

and

ε0 = 38%. (19)

B. Attempted Correction

The reader may note that the values in‘16 and 18 have
a very low standard deviation, implying that all of the
values averaged were about the same. This may be in-
dicative of a missed scaling factor on the Hall voltage.

Taking the value given in 16, we find that the scale
factor is roughly 8.56 ± .02.

Another correction that was attempted was assuming
that the resistance of the sample was, in fact, not negli-
gible. In order to solve for this new system we use Ohm’s
law manifest as

Vdrive = I(R+Rs) = .1V = I(9.8× 106Ω +Rs) (20)

and

VLongitudinal = IRs (21)

where Rs is the resistance of the sample, VLongitudinal is
the voltage given in Fig. 4, and I is the current moving
through the circuit. It is clear to see that for each value of
VLongitudinal the system is solvable for I and Rs. When
this was calculated, only small changes occurred in the
3rd significant figure of VHall, proving that the resistance
of the sample was in fact negligible in the overall circuit.

VI. CONCLUSION

It is clear to see that the results obtained do not agree
in any way with other data. Errors in the estimation of
e2/h differed by around 40% and the estimates for the
levels were not even close to expected integers. Although
this data is very hard to explain, it may be the product of
a missed constant to multiply VHall. We can see evidence
for this in (16) and (18) where the errors become very
low despite the fact that the measured value is entirely
different from the known value. This means that despite
the fact that the values were all off, they were off by a
similar relative scale factor since they were all less than
the known value. It is hard to say where this scale factor
may have come from. It was noted that our measured
values for VHall were quite small so perhaps there was
an error in reading the lockin or perhaps an incorrect
resistance. However, the presence of plateaus in our raw
data suggests that our basic procedure was correct.

The longitudinal voltage behaved normally giving clear
peaks right at the plateaus of the Hall voltage. However,
the longitudinal voltage appears to rise linearly with the
magnetic field rather than being centered around 0. This
could be caused by several factors but the most likely is
some of the Hall voltage being measured in the longitu-
dinal voltage. This mixing of voltages is likely because
in an experiment taken at 4K, it was observed that the
longitudinal voltage was being mixed with the Hall Volt-
age. This could be due to an error wiring that may have
occurred when the sample was removed.

Despite the lack of agreement with known results, we
were able to eliminate several sources of error like the
resistance of the sample and were able to achieve order
to magnitude correctness in our data.
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VII. SUGGESTIONS FOR FURTHER
RESEARCH

Perhaps in the future groups ought to review the lockin
amplifier to make sure that it is working properly before
use. Also, a list of items required for the experiment
would be helpful as there was confusion as to the role of
the different parts in the beginning of the experiment.
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Figure 4: Raw data obtained for the voltages across the sam-
ple and along the sample as a function of the applied magnetic
field (see Fig. 1 for details). It is clear to see the expected
plateaus in the Hall voltage as a result of the 2-dimensional
quantum Hall effect. The green points are the ones that were
averaged to get the results seen in table I Note that this graph
is off by a scaling factor as the effect of the gain due to the
lockin has not been taken into account.
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